Казино Онлайн Статьи о гемблинге Стратегии игры в казино или азартная математика

Тема в разделе "Статьи о гемблинге", создана пользователем eachtorich, 17 авг 2015.

Создал: eachtorich 17 авг 2015
    1. eachtorich
      eachtorich Администратор
      Регистрация:
      6 июл 2015
      Сообщения:
      376
      Симпатии:
      251
      Стратегии игры в казино или азартная математика ddd.jpg 1
      Стратегии игры в казино существуют разные, но самая оптимальная - грамотный подсчет.
      Азартная игра - случайный процесс. В идеале выпадения костей, карт из колоды или чисел на рулетке равновероятны. Возьмём любимую игру многих россиян - рулетку. Там 37 чисел от 0 до 36. Довольно большое количество возможных ставок (от одного числа до ставки на шансы). Возьмём ставку на шансы, например, на цвет. Вы ставите 1 фишку на красное. На рулетке 18 красных чисел, 18 чёрных и одно зелёное зеро. Вероятность выпадения каждого из чисел одинаковая, соответственно, вы поставите 37 фишек, в среднем(!) выиграете 18 фишек (выплаты по ставке на шансы 1 к 1) и 19 проиграете. Получается, поставив 37 фишек в итоге в среднем вы проиграете одну фишку, то есть ожидаемый проигрыш 1 фишка из 37 поставленных =1/37. Можно сформулировать наоборот, что из 37 ставок 36 вернётся вам в качестве выплат, получается, что средний процент выплат в рулетке - 36/37. Вот эта величина 36/37 или примерно 97,3% и является математическим ожиданием (матожидание, МО) выплат в такой игре как рулетка. 1/37=1-36/37=2,7% (примерно) - эта величина называется преимуществом казино. В большинстве игр процент выплат меньше ста, то есть казино имеет преимущество. Но изредка игроки могут повернуть ситуацию в свою пользу и сделать так, что выплаты превышают 100%, в этом случае говорят, что у игры преимущество игрока (преимущество игрока в 0,1% означает, что выплаты составляют 100,1%).

      Все что написано выше - это средние цифры! Ясен пень, что за 37 спинов рулетки вряд ли выпадет ровно по 18 красных и чёрных и одно зеро. То есть практические результаты вероятно будут отличаться от средних ожидаемых. Отклонение факта от теории называется дисперсией. Дисперсия это не только общее понятие отклонения, но и количественная величина, также как и среднеквадратичное отклонение, но их формулы я приводить не буду, большой пользы нет. Дисперсия отличается в зависимости от игры и даже от ставок в одной игре. В той же рулетке представьте, что вы будете ставить по одной фишке на числа либо на шансы. Матожидание в рулетке по всем ставкам одинаковое - 97,3%, а вот дисперсия будет разная. При ставке на шансы вы будете то проигрывать, то выигрывать, за 37 спинов вы вряд ли будете в плюсе или минусе более чем на 5-7 фишек. А вот при ставке на числа вы можете выиграть сразу же в одном из первых спинов, и будете более чем на 30 фишек в плюсе. А может быть наоборот - 37 спинов без "нужного" числа, и вы - в большом минусе. В общем-то, благодаря дисперсии игрок и может быть в плюсе на короткой дистанции. Однако законы теории вероятности гласят, что чем больше мы играем, тем ближе наши результаты будут к математическому ожиданию. Если вы ставите на шансы, то после одного спина вероятность быть в плюсе близка к 50%, после 100 спинов - порядка 37%, а после 1000 спинов уже меньше 20%. В среднем после 1000 спинов вы будете в минусе на 1000*2,7%=27 фишек, но как видите, при определённом везении можете этот минус отыграть. Если вы ставите на числа, то вероятность быть в плюсе после 1000 спинов выше - около 30%, это и правильно, ведь этот вид ставок более дисперсен, возможны большие колебания, значит вы чаще сможете перейти через тот самый барьер в -27 фишек. Но не надо думать, что дисперсия - это только хорошо. Высокая дисперсия означает, что вы чаще будете не только в крупном плюсе, но и в крупном минусе. Ну а на длительной дистанции в десяток тысяч игр вы максимально приблизитесь к матожиданию, и шансы оказаться в плюсе будут около нуля.
      Соответственно, если мы говорим о дисперсии, то нельзя забывать о таком параметре как "риск банкротства", то есть вероятности проиграть все свои деньги на определённой дистанции. Это то, что игроки называют "банкрол менеджмент". Вы должны знать, какие ставки вы можете себе позволить, имея определённый банк, чтобы не проиграться. Ибо обидно будет, если вы придёте с $100, и за пол часа проиграете всё в плюсовую игру, играя по $10. Ну по крайней мере вы должны понимать, какая вероятность, что вы уйдёте не с выигрышем, а с пустым карманом.

      Для игры вам не надо уметь вычислять матожидание и дисперсию, это уже сделали специалисты до вас, вы можете пользоваться готовыми цифрами. Нужно понимать главное - чем больше матожидание игры (меньше преимущество казино), тем лучше для вас. Тем дольше вы сможете играть, тем больше ваши шансы на выигрыш. В идеале вы должны искать игры с преимуществом игрока, тогда на дистанции вы можете ожидать выигрыша. Но говоря о "плюсовых" и "минусовых" для игрока играх нельзя забывать одну истину - существует дисперсия. Чем она выше, тем сильнее вас будет "колбасить" в игре. Даже в игре с преимуществом игрока вы будете проигрывать отдельные сессии (так как преимущество обычно невелико, то проигрыши будут нередкими), и даже в игре со значительным преимуществом казино (типа заряженных слотов в подвальных залах игровых автоматов) вы можете выиграть. Но чем дольше вы играете, тем ближе будете к тому, что должна вам дать игра в соответствии с её матожиданием.

      Успешный игрок должен быть с математикой "на ты". Учебники по матстату и теорверу рекомендовать не буду, сами найдёте, но советую вам "побаловаться" с программой Gambler Odds, она графически покажет многие математические параметры для разных игр и методик ставок - интересное и полезное зрелище.
       
    2.  
Загрузка...
Похожие темы
Вверх